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Using the result from Equation 19 and the slopes in Figure 11, we found the
following conversion,

∆Vx
∆T

=
∆Vy
∆T

≈ 9.78V/µm (26)

6 Analysis

After receiving the data from LabVIEW and converting the voltages into
distances, we wrote a Python program to create a three dimensional map of the
surface. The program uses a Radial Basis Function (RBF) interpolation and is
presented in the appendix. We began with a wire frame plot of the data and
then used the built-in RBF method to interpolate between data points. Below
are examples of a graphite surface and a gold surface using the Python program.

Figure 13: Plot of a graphite surface.

We were able to reproduce the graphite surface multiple times. Because of
the large changes in height, we suspect that we scanned over a region where we
crashed the tip.
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Figure 14: Plot of a gold surface.

The gold surface is more uniform than the graphite surface and consists of
equally spaced ridges along the surface. We believe the tip was scraping the
surface while it was scanning because the ridges are aligned with the x axis.
From Figure 13 and Figure 14, we can determine a rough resolution of tens of
nanometers.

7 Conclusion

We have successfully automated and calibrated the STM. We hope to use
this STM in an advanced laboratory course to introduce students to quantum
tunneling. The STM provides a visual demonstration of quantum tunneling
and will give students experience in LabVIEW. We have begun construction
on a scanning capacitance microscope (SCM), which measures the capacitance
between a tip and a surface as the tip is scanned across it. We designed the
two microscopes so that a student could toggle between STM mode and SCM
mode. Future work involves designing a lab activity for students. In addition,
we could get a calibrated sample to work out a voltage-distance relation and
compare that with the one we found geometrically.
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A Z Calibration

From Figure 8,

∆z2 = Lt sin(θ)− Ls(1− cos(θ)). (27)

The total change in height of the tip is the sum of the movement of the base
and the swinging movement of the tip,

∆zT = ∆z1 + ∆z2 = (t− Ls)(1− cos(θ)) + Lt sin(θ). (28)

To solve for the two unknowns (∆zT and θ) we can obtain another equation
from Figure 8,

tan(θ) =
∆ha + Ls(1− cos(θ))

L+ Ls sin(θ)
. (29)

Simplifying gives

∆ha + Ls = Ls sec(θ) + L tan(θ). (30)

∆zT in Equation 28 is the distance the tip moves relative to horizontal. To
find a conversion, we need the distance ∆t the tip moves relative to the piezo.
Instead of the base of the tip moving because of the lowering of the plate, it
is easier to imagine the piezo extending, shown in Figure 15. The distance the
tip moves perpendicular to the piezo is the distance related to the applied z
voltage.
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Figure 15: If the tip moves an amount ∆zT relative to horizontal, it will move
an amount ∆t relative to the piezo.

From Figure 15,

∆t =
∆zT

cos(θ)
. (31)

Substituting Equation 28 into Equation 31 yields

∆t = (t− Ls)(sec(θ)− 1) + Lt tan(θ). (32)

We now have two equations (30 and 32) and two unknowns (θ and ∆t).
Solving Equation 30 for tan(θ) and squaring both sides yields

sec2(θ)− 1 =
∆h2

a + 2∆haLs(1− sec(θ)) + L2
s(1− sec2(θ))2

L2
, (33)

where I have used tan2(θ) = sec2(θ)− 1. We can re-write the left side using
sec2(θ) − 1 = (sec(θ) − 1)2 + 2(sec(θ) − 1). The goal is to obtain a quadratic
equation for the quantity sec(θ)− 1. Multiplying by L2 on both sides yields

L2(sec(θ)− 1)2 + 2L2(sec(θ)− 1) = ∆h2
a − 2∆haLs(sec(θ)− 1)+

L2
s(sec2(θ)− 1)2,

(34)

where I have used sec(θ)−1 = −(1−sec(θ)), and (sec(θ)−1)2 = (1−sec(θ))2.
We can put this in quadratic form by collecting powers of sec(θ)− 1,

(L2 − L2
s)(sec(θ)− 1)2 + 2(L2 + ∆haLs)(sec(θ)− 1)−∆h2

a = 0. (35)

Using the quadratic formula and simplifying gives
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sec(θ)− 1 =
−(L2 + ∆haLs)± L

√
(L2 − L2

s) + (∆ha + Ls)2

L2 − L2
s

. (36)

We can substitute Equation 36 into Equation 32 and simplify. After defining
the new variable h ≡ ∆ha + Ls we get

∆t =
∓(Ls(Lt + L)− tL)

√
L2 − L2

s + h2 + h(LtL+ Ls(Ls − t))
L2 − L2

s

+

−L3
s + L2

s + L2(Ls − t)
L2 − L2

s

.

(37)

We defined ∆ha as the actuator height above horizontal. Thus ∆t is a
measure of the tip displacement (relative to the piezo) between the top plate
at an arbitrary height and horizontal. What we want is the tip displacement
between two arbitrary heights of the linear actuator. If h1 is the initial height
of the actuator and it moves an amount ∆h, then h2 = h1 + ∆h is the final
height of the actuator. ∆T = ∆t2 − ∆t1 is the corresponding change in tip
displacement. Substituting h1 and h2 into Equation 37 and subtracting the two
equations gives ∆T , the change in tip height perpendicular to the piezo between
to arbitrary actuator heights,

∆T =
∆h(LtL+ Ls(Ls − t))

L2 − L2
s

∓

(Ls(Lt + L)− tL)(
√
L2 − L2

s + h2
2 −

√
L2 − L2

s + h2
1)

L2 − L2
s

.

(38)

B Tip Preparation

To create tips, tungsten (W) wire is electrochemically etched in a solution
of NaOH. When a voltage is applied across the tungsten wire and an electrode,
tungsten begins flaking off. Within a few minutes, the tip is etched to a sharp
point. Once the tip is etched, we rinse it off with distilled water to remove any
contamination. We can be sure that there is a single atom at the end of the
tip, but the resolution of each tip is unpredictable. A review of tip treatment
in STM literature revealed a few facts:22

1. Atomic resolution could happen unexpectedly after a certain amount of
time.

2. Crashed tips can recover to maintain atomic resolution.

3. The tip can undergo changes during scanning which affect the resolution.

4. A mechanically cut tip can often work just as well as a chemically etched
one.
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In general, there is no way to guarantee the tip will give the best possible
resolution. For our purposes, it is not as crucial that the tip be ideal because
we are not able to obtain atomic resolution.

C Surface Plotting Program

#Import modules

import scipy as sp

import scipy.interpolate

import numpy as np

#from scipy.interpolate import griddata

from matplotlib.mlab import griddata

from mpl_toolkits.mplot3d.axes3d import *

from numpy import *

from pylab import *

#Read Data from file

x, y, z = loadtxt(’Graphite5.7XY.txt’, unpack=True, usecols=[0,1,2])

znew = z-min(z)

Zdist = znew*0.0773

xdist = x*0.1022

ydist = y*0.1022

#Gridding and Interpolating Data

sp.interpolate.Rbf(xdist,ydist,Zdist)

xi = np.linspace(min(xdist), max(xdist))

yi = np.linspace(min(ydist), max(ydist))

X, Y = np.meshgrid(xi, yi)

Z = griddata(xdist, ydist, Zdist, xi, yi)

#Graphing Data

fig = plt.figure()

ax = Axes3D(fig)

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, linewidth=1,

antialiased=True, color = ’0.75’)

ax.set_xlabel(’$X$ $(\mu m)$’, fontsize = 24)

ax.set_ylabel(’$Y$ $(\mu m)$’, fontsize = 24)

ax.set_zlabel(’$Z$ \n \n $(\mu m)$’, fontsize = 24)

plt.tick_params(labelsize=24)

ax.zaxis.set_rotate_label(False)

title(’$Graphite \ Sample$’, fontsize = 30)
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