Riverside Food System Map & Food Accessibility Analysis

Josphat M. Mutunga • Nader Afzalan, PhD • University of Redlands • josphat_mmutunga@yahoo.com

Problem Statement

American cities are striving to develop strong local food systems to:
- Increase fresh food accessibility
- Cut carbon emissions due to food transportation (Galzki et al, 2014)
- Promote competitive prices and a variety of nutritional foods to local residents

GIS technology is a powerful tool that can promote this cause in these ways:
- Identify low-hanging fruits such as food deserts
- Inform decision-makers and convincing them to support poor neighborhoods with low food access
- Engage food growers, consumers and agricultural stakeholders through web-based applications

Study Area: City of Riverside, California

The City of Riverside is ranked 12th in California with a population of 324,696 (2016) and a median income of $54,444. The city administration through the Agricultural Business Development supports community programs and initiatives that spur local food production and consumption.

- The food industry was ranked 3rd in 2016 for providing 11,282 jobs
- The city has six designated farmers' markets locations and approximately forty supermarkets
- Other sources include: farms, community gardens, roadside farm stands, and grocery stores

Methods

Project specifications:
- Map food resources
- Investigate the city situation with regard to healthy food accessibility using spatial analysis
- Provide an interactive web tool to engage consumers, food growers and policy makers

Technology:
- ArcGIS API for JavaScript
- JavaScript
- HTML5
- ArcGIS for Desktop

Workflow

1. Data cleaning
2. Unpacking
3. Decoding
4. Network Analyst
5. Spatial Analyst
6. Food sources
7. Income data
8. Street network
9. Publishing Hosted Feature Services

Solution

Develop a repository of Riverside food resources, perform spatial analysis to identify food deserts and overall healthy food accessibility and avail all this information on a web-based application.

ArcGIS Desktop
- Data preparation
- File Geodatabase
- Spatial Analysis
- Publishing Feature Services

ArcGIS Online
- Hosted Feature Services
- ArcGIS REST API

Browsers on user computer

Conclusions

Project requirements were delivered to the client:
- Created an interactive web-based repository of food resources
- Communicated food accessibility analysis results to consumers, food growers and policy makers through the web application

Findings: 19% of City of Riverside population live in food deserts. Accuracy can be improved using other methods that incorporate more complex variables in the analysis, E.g., Food demand vs supply.

Anticipated Impact: Policy makers/donors have a tool for decision making to improve food access in food deserts.

The Web App and Analysis Maps

- Household Median Income equal or below $43,000
- 20% households below poverty level
- Household Median Income equal or below $43,000
- 33% population live more than 0.3 miles from a food source
- Food sources; farmers markets, supermarkets, groceries, food pantries, and farm stands

Web Mapping Riverside Food Resources
- Visualize food resources in an interactive web tool
- Provide access to food information such as address, contact, website links, foods stocked and working hours
- Show overall spatial distribution of local food sources in the City of Riverside

Contact: josphat_mmutunga@yahoo.com